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Stephen Read, and to contribute it to this celebration of his
work. Steve is an accomplished logician, shrewd philosopher,
and medievalist extraordinaire. For the best part of 40 years
now (gulp...), we have been cooperating—writing, reading each
other’s work, discussing, agreeing, disagreeing, attending confer-
ences and organising reseach projects together. In the process, I
have learned an enormous amount from him. In particular, he it
was who introduced me in St Andrews to the fascinating world
of medieval logic in the first year of my first philosophy position,
and who has continued to show me its depths and sophistication
ever since. Thank you, Steve. Dedicating this essay to him is a
small and inadquate token of my gratitude.

1 The T -Schema and its Bradwardinization
In a number of recent papers, Stephen Read has revived a solution to the Liar
paradox proposed by the 14th Century philosopher Thomas Bradwardine,
phrasing it in modern terms and defending it.1 A generally accepted principle
concerning truth is the T -schema:

T 〈A〉 ↔ A

1See, e.g., Read (2002), (2006), (2008a), (2008b).
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where A is any non-indexical sentence, and 〈A〉 is its name. With standard
techniques of self-reference, we can find a sentence, L, of the form ¬T 〈L〉,
so that:

T 〈L〉 ↔ ¬T 〈L〉

A modicum of logic then delivers the contradiction T 〈L〉 ∧ ¬T 〈L〉. Read
rejects the T -schema in favour of:

T 〈A〉 ↔ ∀p(〈A〉 : p→ p)

where ‘〈A〉 : p’ is to be understood as ‘〈A〉 says that p’. Let us call this
the Bradwardinized form of the T -schema. The thought here is that (an
unambiguous) 〈A〉 may say many things, and for it to be true, all of them
must hold. We may assume that 〈A〉 says that A, 〈A〉 : A. Let C be the
conjunction of all the other things that it says; then what the Bradwardinized
form of the T -schema is telling us is that:

T 〈A〉 ↔ (A ∧ C)

The left-to-right direction of the T -schema is clearly forthcoming; but not
the right-to-left. Moreover, taking A to be L gives us:

T 〈L〉 ↔ (¬T 〈L〉 ∧ C)

It quickly follows that ¬T 〈L〉, but then also that ¬C. The route back to
T 〈L〉 is blocked.

Read’s solution has been discussed at some length in the essays in Rah-
man, Tulenheimo, and Genot (2008), and solutions of this general kind are
also discussed in Field (2007), ch. 7. In this paper, I want to table a couple
of other points about the solution—both of them objections.

2 Denotation Paradoxes
First, if the solution is to be a robust one, it must apply to all paradoxes
in the same family: same sort of paradox, same sort of solution.2 How wide
that family is, and, in particular, whether it extends to the set theoretic
paradoxes,3 may be moot. But it would be generally agreed that the family
contains the paradoxes concerning satisfaction, denotation, and other seman-
tic notions.

The naive S (satisfaction) schema is:
2See Priest (2002), 11.5.
3As argued in Priest (2002), Part 3.
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∀x(xS 〈A〉 ↔ Ay(x))

where xSy means that x satisfies y,4 A is any formula of one free variable,
y, and Ay(x) is the result of substituting x for all free occurrences of y
(subject to preventing clashes with bound variables). Substituting ¬ySy for
A quickly leads to the Heterological paradox. The “Bradwardinized” version
of the S-schema is, presumably:

∀x(xS 〈A〉 ↔ ∀P (〈A〉 : P → Px))

where the second-order quantifiers range over properties, and ‘〈A〉 : P ’ means
that ‘A’ expresses P . It is easy to check that the Heterological paradox is
now solved in much the same way as the Liar.5

The paradoxes of denotation are, however, a very distinctive sub-family
of the semantic paradoxes;6 distinctive enough that solutions proposed to
other paradoxes of self-reference do not necessarily carry over to them.7 So
it is here. These paradoxes depend, in the first instance, on the naive D
(denotation) schema:

∀x(〈n〉Dx↔ n = x)

where xDy means that x denotes y, and n is any name. The Bradwardized
form of this, by analogy with the cases for truth and satisfaction, is:

∀x(〈n〉Dx↔ ∀y(〈n〉 : y → y = x))

It is less than clear how to read ‘〈n〉 : y’ here. In the cases of truth and satis-
faction, the paradoxes are blocked by supposing that sentences and predicates
have “excess content”. By analogy, we must suppose that names have “excess
content” in a similar way. ‘〈n〉 : y’ expresses the thought that y is part of
the content of the name n, whatever we should take this to mean. I leave it
to those sympathetic to the solution to make sense of this idea.8

4Where this may be taken to entail that y is a formula.
5Thus, we may suppose that 〈A〉 : λyA. If the other properties expressed by 〈A〉

are {Pi : i ∈ I}, let C be
∧
i∈I

Piy. Then we have: xS 〈A〉 ↔ (λyA(x) ∧ λyC(x)), so

xS 〈A〉 ↔ (Ay(x)∧Cy(x)). The left-to-right direction of the S-schema is forthcoming, but
not the right-to-left. Now taking ¬ySy for A gives xS 〈¬ySy〉 ↔ ¬xSx ∧ Cy(x). Let t be
〈¬ySy〉. Substituting this for x, we have tSt ↔ ¬tSt ∧ Cy(t). ¬tSt follows, but so does
¬Cy(t), and the path back to tSt is blocked.

6First, they use descriptions essentially. Second, the argument for each of the contra-
dictory conjuncts, C and ¬C, does not go by way of establishing C ↔ ¬C: an independent
argument is given for each horn or the contradiction.

7See Priest (2006a).
8Actually, there is a way of avoiding the issue. We can define 〈n〉Dx as xS 〈v = n〉.

The Bradwardinised S-schema then gives ∀x(〈n〉Dx↔ ∀P (〈v = n〉 : P → Px). It is then
the condition v = n that has “excess content”. But it seems rather arbitrary to insist that
D must be a defined notion.
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Given that 〈n〉 : n, it follows from the Bradwardinized D-schema that
〈n〉Dx → x = n. But we don’t have the converse. In particular we can not
get 〈n〉Dn from n = n. Now, if one consults a formal proof of the simplest
of the denotational paradoxes, Berry’s, then one can see that the two claims
about denotation required for the proof are that for a certain descriptive
term, t, (i) 〈t〉Dx→ x = t and (ii) 〈t〉Dt.9 One may therefore use the proof
as a reductio to establish that ¬ 〈t〉Dt.

I confess that this strikes me as something of a reductio of the Brad-
wardine line itself. A sentence with a binary relation, aRb holds just if the
objects denoted by ‘a’ and ‘b’ stand in the relation (expressed by) R. How
could it be that the name ‘t’ does not denote the object denoted by ‘t’?
Maybe some funny business is going on if ‘t’ has more than one denotation.
But the left-to-right half of the D-schema entails that if a term has a de-
notation, it is unique.10 Or again, maybe something strange is going on if
‘t’ has no denotation. But the proof of the Berry paradox shows, using just
the left-to-right half of the D-schema, that the condition in the description
t is satisfied by a unique object; so that the term does have a denotation. t
may be taken to be the description ιyA, where A is ‘y is the least natural
number that is not denoted by a name (description) of less than 100 words’.
Standard considerations (employing, I note again, only the left-to-right part
of the D-schema) establish that ∃!yA.11 By the very way that descriptions
work:

(*) ∃!yA→ ∀x(Ay(x) → 〈ιyA〉Dx)

It follows that ∃x 〈ιyA〉Dx. For good measure, given that:

(**) ∃!yA→ Ay(ιyA)

we have 〈ιyA〉DιyA. That is, 〈t〉Dt, and we are back with an explicit
contradiction.

The only move here would seem to be to deny (*). Even though there is
a unique thing satisfying A, ‘ιyA’ does not denote it; ‘ιyA’ has no denota-
tion. How, then, are descriptions supposed to work? The basic principle of

9See Priest (2006b), 1.8. The second of these can be inferred from the D-schema
and t = t. This is the only place in which the right-to-left direction of the D-schema is
employed.

10In truth, something already seems to have gone wrong at this stage. If the deotation
of a term is unique, how can it have “excess content”?

11Given that there is only a finite number of terms with the required number words,
provided that each term has at most one denotation, the number of numbers denoted by
them is finite. There must therefore be numbers that are not denoted, and so a least. For
details, see Priest (2006b), 1.8.
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descriptions, that ∃!yA → Ay(ιyA), would itself seem to lose all rationale.
At the very least, Read owes us a theory of definite descriptions. Moreover,
if (**) fails, this on its own, is sufficient to avoid the Berry conclusion, since
the principle is appealed to in the argument for it. The Bradwardinian ma-
chinery is otiose. Indeed, if t really does have no denotaton, ∃x xDt no longer
follows from ∀x(〈t〉Dx ↔ x = t), since we cannot instantiate the quantifier
with t (and even if we could, depending on one’s theory of non-denotation,
t = t might not be true). We do not have to give up the naive D-Schema at
all.

3 Propositional Quantification
Let us now turn to the second problem: the Bradwardine solution to the
Liar itself. This has to be phrased using propositional quantification. Some
have found such quantification problematic, and reject the notion entirely.
Clearly, Read is in no position to do this; let us grant its legitimacy, at least
for the sake of argument. There is certainly a grammatical awkwardness in
reading propositional quantification in English. Thus, ‘∃p p’ is something
like ‘some proposition is such that it’. One feels the need to stick ‘is true’
on the end. But propositional quantification dispenses with the need for
this. And just because of that fact, propositional quantification allows us to
express what normally requires the truth predicate. Indeed, the plain vanilla
p says, in effect, that p is true. It appears this allows us to formulate the liar
paradox without an explicit truth predicate.

Thus, consider a proposition, a, that is identical to its own negation; that
is, a proposition of the form ‘not me’. By the standards of propositional
quantification, this is certainly meaningful. And since every proposition is
equivalent to itself, a is equivalent to its own negation. So we are back with
a contradicton.

The obvious reply here is to deny that ‘a’ refers to anything; that is,
to say that a does not exist. But on what grounds can one do this? a is
obviously self-referential (‘not me’). But there would appear to be nothing
problematic about self-reference as such. Merely consider: ‘this proposition is
being expressed by me now’, ‘this proposition can be expressed by a sentence
with 11 words’. Neither is it a problem to construct a theory of ungrounded
propositions to do justice to propositions of this kind. One such is given by
Barwise and Etchemendy (1987). In their non-well-founded theory, given any
boolean function of propositions, F (x), there are solutions to the fixed-point
equation x = F (x).12

12One might wonder why this does not yield inconsistency in the form of the proposition
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At the very least, the solution needs to be backed up by a theory of propo-
sitions, and not one specially rigged to give the result. One, can of course,
use the paradox as a reductio of the claim that a exists. But this is cheap:
if one builds any pre-condition into a principle employed in a paradoxical
argument, one can use the argument as a reductio of this. Moreover, and
again, if one has to resort to this move, it finesses the whole Bradwardinian
machinery. One can endorse the plain unvarnished T -schema: this simply
applies to propositions, and the liar sentence does not express a proposition.

And in the last instance, denying the existence of the paradoxical proposi-
tion does not work; as usual, strengthened paradoxes arise. By techniques of
diagonalisation, one can certainly find a term, b, of the form ∃q q = b∧¬q.13

Now, suppose that b; that is, ∃q(q = b ∧ ¬q). Then ¬b by elementary quan-
tifier rules and the substitutivity of identicals. Conversely, suppose that ¬b.
Then b = b ∧ ¬b, and so ∃q(q = b ∧ ¬q); that is, b.

And now, if one denies that ‘b’ refers to anything, that is, one asserts
that b does not exist, we are back in trouble. For suppose that b does not
exist, i.e., that ¬∃q q = b. From this it follows that ¬∃q(q = b ∧ ¬q), which
is ¬b. Moreover, it follows that b = b∧¬b, and by existential quantification,
∃q(q = b ∧ ¬q), that is, b. (Both of these steps might be taken to fail of b
does not exist. But since ¬b (is true), ¬b must exist; so, then, must b.)

One might try to avoid this objection by ramification, though there is
no reason to suppose that Bradwardine had any inclination in this direc-
tion (and, as we shall see, reasons why he should not have). Propositional
quantifiers come in a hierarchy, indexed, say, by the natural numbers. All
propositions have a rank, which is the greatest index of all bound variables
in the formula specifying it;14 and quantifiers range only over propositions
of lower rank. Thus, our paradoxical proposition is a proposition, b, of the
form ∃qn(qn = b ∧ ¬qn), for some n. From b we can now infer ¬b; so ¬b.
When we go in the reverse direction, we can get to b = b ∧ ¬b. But since

such that x = ¬x. The answer is that such objects are not guaranteed to satisfy excluded
middle, x ∨ ¬x, in a situation (and, for that matter, they may also satisfy x ∧ ¬x in
a situation). The internal logic of propositions is First Degree Entailment. This might
suggest moving from a classical to a non-classical logic to accommodate non-well-founded
propositions. But if one is to do this, one might just as well have done it with the pristine
T -schema.

13This actually requires the language to contain the notion of identity between propos-
tions. (As in Bloom and Suszko (1971) and (1972).) But this hardly seems problematic:
if we can quantify over propositions, we can, presumably, talk about their identity. Diag-
onalisation is normally applied to formulas, not terms; but it can be applied to terms just
as well. See Priest (1997).

14Actually, even at this stage there is a problem, since there is no particular reason as
to why only one formula should specificy the proposition. But let that pass.

6



b is a proposition of rank n, we cannot move to ∃qn(qn = b ∧ ¬qn), only to
∃qn+1(qn+1 = b ∧ ¬qn+1).

Ramification brings familiar problems, however.15 For a start, ramifi-
cation seems far too strong. It rules out the possibility of saying perfectly
intelligible things.16 The natural expression of the law of excluded middle
with propositional quantification is: ∀p(p∨¬p) (where that very proposition
is within the scope of the quantifier). After ramification, there is no propo-
sition that expresses this: the closest one can get is ∀pn(pn ∨ ¬pn), for some
particular n; this is obviously weaker. One might try to invoke the device
of typical ambiguity, so that the formula is to be taken as asserted for all
values of n. But an appeal to typical ambiguity works only when we are
dealing with a universally quantified sentence. Thus, the natural way to ex-
press the dialetheic thesis, and say that some contradictory sentence is true,
is ∃p(p ∧ ¬p), and this is not equivalent to a typically ambiguous assertion
of ∃pn(pn ∧¬pn), which asserts the existence of many more dialetheias—one
of each type.17

And in the case of the Bradwardine solution, ramification is particularly
disasterous. If we are going to have to resort to some kind of ramification,
we might just as well have resorted to it in the first place, ramifying the
truth predicate, à la Tarski. The net effect is the same, and is much simpler,
dispensing, as it does, with propositional quantification altogether. Finally,
Bradwardine’s account of truth cannot even be formulated with ramified
quantifiers. The nearest we can get is:

T 〈A〉 ↔ ∀pn(〈A〉 : pn → pn)

for some rank, n, but which? It might be thought that this would be deter-
mined by A. Unfortunately, it cannot. According to Read’s account, saying
that is closed under entailment. But A will entail propositions of arbitrarily
high rank; say, for arbitrarily high m, A ∨ ∀pm(pm ∨ ¬pm). Thus, no n is
going to be adequate in a statement of the theory of truth.18

15See Priest (2006b), 1.5, and Priest (2002), ch. 10.
16Including, most notably, the theory itself. For to say, as I did, that all propositions

have some rank is exactly to quantify over all propositions, which is exactly what, according
to the theory, cannot, grammatically, be done. The theory is then self-refuting.

17There is also something rather disingenuous with typical ambiguity, even in the uni-
versal case. What is meant by a typically ambiguous assertion of ∀pnA(pn), is exactly
∀n∀pnA(pn). The effect of ramification is to disallow ourselves the ability to say what we
mean.

18Nor does appealing to substitutional quantification resolve any of these problems.
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4 Conclusion
Bradwardine’s solution to the liar paradox is a very clever one, both by
the standards of the great period of medieval logic and by contemporary
standards; and Read’s revival and careful contemporary defence of it are
much to be welcomed. But what we seem to learn, in the end, is that the
solution, though not subject to some of the perhaps more obvious objections,
is sunk by essentially the same kinds of considerations that sink all consistent
solutions to the paradoxes, such as their inability to handle other paradoxes
of the same kind, and extended paradoxes.

What Bradwardine would have said about these matters, we can, of
course, only speculate.19
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